Arc/Arg3.1 Mediates Homeostatic Synaptic Scaling of AMPA Receptors

نویسندگان

  • Jason D. Shepherd
  • Gavin Rumbaugh
  • Jing Wu
  • Shoaib Chowdhury
  • Niels Plath
  • Dietmar Kuhl
  • Richard L. Huganir
  • Paul F. Worley
چکیده

Homeostatic plasticity may compensate for Hebbian forms of synaptic plasticity, such as long-term potentiation (LTP) and depression (LTD), by scaling neuronal output without changing the relative strength of individual synapses. This delicate balance between neuronal output and distributed synaptic weight may be necessary for maintaining efficient encoding of information across neuronal networks. Here, we demonstrate that Arc/Arg3.1, an immediate-early gene (IEG) that is rapidly induced by neuronal activity associated with information encoding in the brain, mediates homeostatic synaptic scaling of AMPA type glutamate receptors (AMPARs) via its ability to activate a novel and selective AMPAR endocytic pathway. High levels of Arc/Arg3.1 block the homeostatic increases in AMPAR function induced by chronic neuronal inactivity. Conversely, loss of Arc/Arg3.1 results in increased AMPAR function and abolishes homeostatic scaling of AMPARs. These observations, together with evidence that Arc/Arg3.1 is required for memory consolidation, reveal the importance of Arc/Arg3.1's dynamic expression as it exerts continuous and precise control over synaptic strength and cellular excitability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A specific requirement of Arc/Arg3.1 for visual experience-induced homeostatic synaptic plasticity in mouse primary visual cortex.

Visual experience scales down excitatory synapses in the superficial layers of visual cortex in a process that provides an in vivo paradigm of homeostatic synaptic scaling. Experience-induced increases in neural activity rapidly upregulates mRNAs of immediate early genes involved in synaptic plasticity, one of which is Arc (activity-regulated cytoskeleton protein or Arg3.1). Cell biological stu...

متن کامل

Increased Expression of the Immediate-Early Gene Arc/Arg3.1 Reduces AMPA Receptor-Mediated Synaptic Transmission

Arc/Arg3.1 is an immediate-early gene whose expression levels are increased by strong synaptic activation, including synapse-strengthening activity patterns. Arc/Arg3.1 mRNA is transported to activated dendritic regions, conferring the distribution of Arc/Arg3.1 protein both temporal correlation with the inducing stimulus and spatial specificity. Here, we investigate the effect of increased Arc...

متن کامل

Rapid Translation of Arc/Arg3.1 Selectively Mediates mGluR-Dependent LTD through Persistent Increases in AMPAR Endocytosis Rate

Salient stimuli that modify behavior induce transcription of activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) and transport Arc mRNA into dendrites, suggesting that local Arc translation mediates synaptic plasticity that encodes such stimuli. Here, we demonstrate that long-term synaptic depression (LTD) in hippocampal neurons induced by group 1 metabotropic glutamate receptors (m...

متن کامل

Arc/Arg3.1: Linking Gene Expression to Synaptic Plasticity and Memory

Arc/Arg3.1 is an effector immediate-early gene implicated in the consolidation of memories. Although cloned a decade ago, the physiological role of Arc/Arg3.1 in the brain has remained elusive. Four papers in this issue of Neuron address this function. These studies show that Arc/Arg3.1 regulates endophilin 3 and dynamin 2, two components of the endocytosis machinery. Genetic ablation of Arc/Ar...

متن کامل

Arc/Arg3.1 Interacts with the Endocytic Machinery to Regulate AMPA Receptor Trafficking

Arc/Arg3.1 is an immediate-early gene whose mRNA is rapidly transcribed and targeted to dendrites of neurons as they engage in information processing and storage. Moreover, Arc/Arg3.1 is known to be required for durable forms of synaptic plasticity and learning. Despite these intriguing links to plasticity, Arc/Arg3.1's molecular function remains enigmatic. Here, we demonstrate that Arc/Arg3.1 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2006